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Abstract
Sequential recommendation (SR) models based on Trans-
formers have achieved remarkable successes. The self-
attention mechanism of Transformers for computer vision
and natural language processing suffers from the oversmooth-
ing problem, i.e., hidden representations becoming similar to
tokens. In the SR domain, we, for the first time, show that the
same problem occurs. We present pioneering investigations
that reveal the low-pass filtering nature of self-attention in the
SR, which causes oversmoothing. To this end, we propose
a novel method called Beyond Self-Attention for Sequen-
tial Recommendation (BSARec), which leverages the Fourier
transform to i) inject an inductive bias by considering fine-
grained sequential patterns and ii) integrate low and high-
frequency information to mitigate oversmoothing. Our dis-
covery shows significant advancements in the SR domain and
is expected to bridge the gap for existing Transformer-based
SR models. We test our proposed approach through exten-
sive experiments on 6 benchmark datasets. The experimen-
tal results demonstrate that our model outperforms 7 baseline
methods in terms of recommendation performance.

1 Introduction
Recommender systems play a vital role in web applications,
delivering personalized item recommendations by analyz-
ing user-item interactions (He et al. 2020; Choi, Jeon, and
Park 2021; Kong et al. 2022; Hong et al. 2022; Choi et al.
2023a; Gao et al. 2023). As users’ preferences evolve over
time, capturing the temporal user behavior becomes essen-
tial. This is where SR steps in, attracting substantial research
attention (Hidasi et al. 2016; Wu et al. 2022; Gao et al. 2023;
Tang and Wang 2018; Kang and McAuley 2018; Chen et al.
2019; Schedl et al. 2018; Hansen et al. 2020; Jiang et al.
2016; Huang et al. 2018).

With the increasing popularity of sequential recommen-
dation (SR) systems, Transformer-based models, especially
those utilizing self-attention (Vaswani et al. 2017), have
emerged as dominant approaches for providing accurate and
personalized recommendations to users (Kang and McAuley
2018; Sun et al. 2019; Li, Wang, and McAuley 2020;
Wu et al. 2020; Wu, Cai, and Wang 2020). However, de-
spite their successes in the SR, Transformer-based models
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Items of long-term persistent interest that are low frequencies

?

Items of short-term abrupt interest that are high frequenciesFourier Domain of
 Item Embedding

...

Figure 1: Illustration of high and low-frequency signals in
SR. A user u1’s long-term persisting interests and tastes con-
stitute low frequencies in the Fourier domain of embedding,
and abrupt short-term changes in u1’s interests correspond
to high frequencies.

Method Inductive Bias Self-Attention High-pass Filter

SASRec ✗ ✓ ✗
BERT4Rec ✗ ✓ ✗
FMLPRec ✓ ✗ ✗
DuoRec ✗ ✓ ✗

BSARec ✓ ✓ ✓

Table 1: Comparison of existing Transformer-based methods
that differ at three points: i) using inductive bias, ii) using
self-attentions, and iii) using high-pass filters

possess inherent limitations that confine themselves to the
learned self-attention matrix. The following two key limi-
tations need to be addressed: i) First, the models may still
suffer from suboptimal performance due to the insufficient
inductive bias inherent in processing sequences with self-
attention (Dosovitskiy et al. 2020). While the self-attention
mechanism captures long-range dependencies, it may not
only adequately consider certain fine-grained sequential pat-
terns but also be overfitted to training data, leading to po-
tential weak generalization capabilities. As Table 1 shows,
SASRec (Kang and McAuley 2018), BERT4Rec (Sun et al.
2019), and DuoRec (Qiu et al. 2022) rely on training the
self-attention layer and lack inductive bias1. ii) The sec-
ond limitation pertains to the low-pass filtering nature of

1We mean by inductive bias a pre-determined attention struc-
ture that is not trained but injected by us when designing our model.
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self-attention. By focusing on the entire range of data, self-
attention may unintentionally smoothen out important and
detailed patterns in embedding, resulting the oversmoothing
problem. The oversmoothing issue poses a significant chal-
lenge in the SR domain, as it may hinder the ability of model
to capture crucial temporal dynamics and provide accurate
predictions. In Table 1, most Transformer-based models are
limited to low-pass filters. These models do not consider
high-pass filters. Note that FMLPRec (Zhou et al. 2022) at-
tempts to learn a filter, but it tends to gravitate towards the
low-pass filter (cf. Fig. 2 (b)). As shown in Fig. 1, the low-
pass filter only captures the ongoing preferences of the user
i.e. an Apple fanatic, and it may be difficult to capture pref-
erences based on new interests or trends (e.g., snorkel mask
to buy for vacation). When recommending items for the next
time (|Su1 |+1), it is undemanding to recommend long-term
interests, but recommending short-term interests is a chal-
lenging task.

In this paper, we address these two limitations and present
Beyond Self-Attention for Sequential Recommendation
(BSARec), a novel model that uses inductive bias via
Fourier transform with self-attention. By using the Fourier
transform, BSARec gains access to the inductive bias of
frequency information, enabling the capture of essential
patterns and periodicity that may be overlooked by self-
attention alone. This enhances the inductive bias and has the
potential to improve recommendation performance.

To tackle the oversmoothing issue, we introduce our own
designed frequency rescaler to apply high-pass filters into
BSARec’s architecture. Our frequency rescaler can capture
high-frequency behavioral patterns, such as interests driven
by short-term trends, as well as low-frequency patterns, such
as long-term interests, in a user’s behavioral patterns (cf.
Fig. 1). Additionally, our method provides a perspective to
improve the performance of SR models and solve the prob-
lem of oversmoothing.

To evaluate the efficacy of BSARec, we conduct extensive
experiments on 6 benchmark datasets. Our experimental re-
sults demonstrate that BSARec consistently outperforms 7
baseline methods regarding recommendation performance.
Additionally, we conduct a series of experiments that un-
derscore the necessity of our approach and verify its effec-
tiveness in mitigating the oversmoothing problem, leading
to improved recommendation accuracy and enhanced gener-
alization capabilities. The contributions of this work are as
follows:

• We unveil the low-pass filtering nature of the self-
attention of Transformer-based SR models, resulting in
the problem of oversmoothing.

• We propose a novel model, Beyond Self-Attention for
Sequential Recommendation (BSARec), that leverages
the Fourier transform to balance between our inductive
bias and self-attention. Further, we design the rescaler
for high-pass filters to mitigate the oversmoothing issue.

• Extensive evaluation on 6 benchmark datasets demon-
strates BSARec’s outperformance over 7 baseline meth-

Therefore, we call it as attentive inductive bias.

ods, validating its effectiveness in improving recommen-
dation performance.

2 Preliminaries
2.1 Problem Formulation
The goal of SR is to predict the user’s next interaction with
an item given their historical interaction sequences. Given a
set of users U and items V , we can sort the interacted items
of each user u ∈ U chronologically in a sequence as Su =
[vu1 , v

u
2 , . . . v

u
|Su|], where vui denotes the i-th interacted item

in the sequence. The aim is to recommend a Top-k list of
items as potential next items in a sequence. Formally, we
predict p(vu|Su|+1 = v|Su).

2.2 Self-Attention for Sequential
Recommendation

The basic idea behind the self-attention mechanism is that
elements within sequences are correlated but hold varying
levels of significance concerning their positions in the se-
quence. Self-attention uses dot-products between items in
the sequence to infer their correlations, which are defined as
follows:

A = softmax
(
QKT

√
d

)
, (1)

where Q = ESuWQ, K = ESuWK , and d is the scale fac-
tor. The scaled dot-product component learn the latent corre-
lation between items. Other components in Transformer are
utilized in SASRec, including the point-wise feed-forward
network, residual connection, and layer normalization. Our
method uses this self-attention matrix and adds an inductive
bias to find the trade-off between the two methods.

2.3 Discrete vs. Graph Fourier Transform
This subsection introduces the concept of the frequency do-
main and the Fourier transform, providing a cohesive foun-
dation for the proposed method.

The Discrete Fourier Transform (DFT) is a linchpin
in digital signal processing (DSP), projecting a sequence
of values into the frequency domain (or the Fourier do-
main). We typically use F : RN → CN to denote the
Discrete Fourier Transform (DFT) with the Inverse DFT
(IDFT) F−1 : CN → RN . Applying F to a signal is
equal to multiplying it from the left by a DFT matrix.
The rows of this matrix consist of the Fourier basis fj =

[e2πi(j−1)·0 . . . e2πi(j−1)(N−1)]T/
√
N ∈ RN , where i is the

imaginary unit and j denotes the j-th row. For the spec-
trum of x, let it be represented as x̃ = Fx. We can de-
fine x̃lfc ∈ Cc containing the c lowest elements of x̃, and
x̃hfc ∈ CN−c as the vector containing the remaining el-
ements. The low-frequency components (LFC) of the se-
quence signal x are defined as:

LFC[x] = [f1,f2, . . . ,fc] x̃lfc ∈ RN . (2)

Conversely, the high-frequency components (HFC) are:

HFC[x] = [fc+1,fc+2, . . . ,fN ] x̃hfc ∈ RN . (3)
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Figure 2: (a) A ring graph with N nodes, and (b) visualiza-
tion of the filter of the self-attentions in LastFM.
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Figure 3: Visualization of oversmoothing in LastFM. The
singular values and cosine similarity of user sequence output
embedding.

Note that we use real-valued DFT and multiplying with the
Fourier bases in Eqs. 2 and 3 means IDFT. For more descrip-
tions, interested readers should refer to Appendix.

The Graph Fourier Transform (GFT) can be considered as
a generalization of DFT toward graphs. In other words, DFT
is a special case of GFT, where a ring graph of N nodes is
used (see Fig. 2 (a)) (Sandryhaila and Moura 2014). In fact,
DFT is a method to project a sequence of values onto the
eigenspace of the Laplacian matrix of the ring graph (which
is the same as the Fourier domain).

The frequency concept can also be described with the ring
graph. The number of neighboring nodes with different signs
on their signals corresponds to the frequency. Therefore,
low-frequency information means a series of signals over N
nodes whose signs do not change often. In the case of the
SR in our work, where N nodes mean N item embeddings,
such low-frequency information means a long-standing in-
terest of a user (see. Fig. 1).

3 Motivation
In this section, we show that self-attention in the spec-
tral domain is a low-pass filter that continuously erases
high-frequency information. We visualize the spectrum of
self-attention of the Transformer-based sequantial model as
shown in the Fig. 2 (b). It shows the spectrum is concentrated
in the low frequency region, and reveals that self-attention is
a low-pass filter. We further make theoretical justifications

Attentive
Inductive BiasSelf-Attention

Add & Norm Add & Norm

Feed Forward

Add & Norm

Prediction Layer

Embedding Layer

low
0

1 1

FFT

Inverse FFT

Frequency  Rescaler

0
high low high

Figure 4: Architecture of the proposed BSARec. We propose
a BSA encoder that uses both an inductive bias with a fre-
quency rescaler and original self-attention.

for the low-pass filter of self-attention.
Theorem 3.1 (Self-Attention is a low-pass filter). Let
A = softmax(QKT/

√
d). Then A inherently acts as

a low-pass filter. For all x ∈ RN , in other words,
limt→∞ ||HFC[At(x)]||2/||LFC[At(x)]||2 = 0 (See Ap-
pendix for the formal definition of the low-pass filter).

Theorem 3.1 is ensured by the Perron-Frobenius theo-
rem (Meyer and Stewart 2023; He and Wai 2021) and it
reveals that the attention matrix is always a low pass filter
independent of the input key and query matrices. A proof is
provided in Appendix. If the self-attention matrix is applied
successively, the final output loses all feature expressiveness
as the number of layers increases to infinity.

Therefore, the self-attention causes the oversmoothing
problem that Tranformer-based sequential models lose fea-
ture representation in deep layers (see Fig. 3). As can be seen
from the empirical analysis of Fig. 3, as the number of lay-
ers of these models increases, the cosine similarity increases
and the singular value tends to decay rapidly 2 (Fan et al.
2023). This inevitably causes the model to fail to capture the
user’s detailed preferences, and performance degradation is
a natural result.

We not only alleviate oversmoothing using a high-pass fil-
ter as motivation against this background, but also try to cap-
ture short-term preferences of user behavior patterns through
inductive bias.

4 Proposed Method
Here, we introduce the overview of BSARec, the method
behind our BSARec, and the relation to previous models.

4.1 Embedding Layer
Given a user’s action sequence Su and the maximum se-
quence length N , the sequence is first truncated by remov-
ing earliest item if |Su| > N or padded with 0s to get a

2This indicates that the largest singular value predominates and
the other outliers are much smaller, and there is a potential risk of
losing embedding rank.



fixed length sequence s = (s1, s2, . . . , sN ). With an item
embedding matrix M ∈ R|V|×D, we define the embedding
representation of the sequence Eu, where D is the latent di-
mension size and Eu

i = Msi . To make our model sensi-
tive to the positions of items, we adopt positional embedding
to inject additional positional information while maintaining
the same embedding dimensions of the item embedding. A
trainable positional embedding P ∈ RN×D is added to the
sequentially ordered item embedding matrix Eu. Moreover,
dropout and layer normalization operations are also imple-
mented:

Eu = Dropout(LayerNorm(Eu +P)). (4)

4.2 Beyond Self-Attention Encoder
We develop item encoders by stacking beyond self-attention
(BSA) blocks based on the embedding layer. It generally
consists of three modules: BSA layer, attentive inductive
bias with frequency rescaler, and point-wise feed forward
network.

Beyond Self-Attention Layer Let Ãℓ be a beyond self-
attention (BSA), Aℓ

IB be a rescaled filter matrix for the l-th
layer, and Fℓ is the input for the l-th layer. When l = 0, we
set F0 = Eu. We use the following BSA layer:

Sℓ = ÃℓFℓ = αAℓ
IBF

ℓ + (1− α)AℓFℓ, (5)

where the first term corresponds to DSP, where the discrete
Fourier transform is utilized, α ≤ 1 is a coefficient to (de-
)emphasize the inductive bias. Therefore, our main design
point is to trade off between the verified inductive bias and
the trainable self-attention.

For the multi-head version used in BSARec, the multi-
head self-attention (MSA) is defined as:

F̂ℓ = MSA(Fℓ) = [S1,S2, . . .Sh]WO, (6)

where h is the number of heads and the projection matrix
WO ∈ RD×D is the learnable parameter.

Attentive Inductive Bias with Frequency Rescaler We
propose a filter that injects the attentive inductive bias and at
the same time adjusts the scale of the frequency by dividing
it into low and high frequency components:

Aℓ
IBF

ℓ = LFC[Fℓ] + βHFC[Fℓ], (7)

where β is a trainable parameters to scale the high-pass fil-
ter. In particular, β can be either a vector with D dimension
or a scalar parameter.

Meaning of our Attentive Inductive Bias We note that
DFT is used in Eq. (7), which assumes the ring graph in
Fig. 2 (a) — in the perspective of self-attention, this induc-
tive bias says that an item to purchase is influenced by its
previous item. This attentive inductive bias does not need to
be trained since we know that it presents universally for SR.

However, we do not stop at utilizing the inductive bias in
a naı̈ve way but extract its low and high-frequency informa-
tion to learn how to optimally mix them in Eq. (7). To be
more specific, suppose a ring graph of N item embeddings.

LFC[·] on them extracts their common signals that do not
greatly change following the ring graph topology whereas
HFC[·] extracts locally fluctuating signals (see Fig. 1). By
selectively utilzing the high-pass information, we can pre-
vent the oversmoothing problem (see Fig. 3). If relying on
LFC[·] only, we cannot prevent the oversmoothing problem.

In addition, we also learn the self-attention matrix Aℓ in
Eq. (5) and combine it with our attentive inductive bias Aℓ

IB.
By separating Aℓ from Ãℓ, the self-attention mechanism fo-
cuses on capturing non-obvious attentions in Aℓ.

Point-wise Feed-Forward Network and Layer Outputs
The multi-head attention function is primarily based on lin-
ear projection. A point-wise feed-forward network is applied
to import nonlinearity to the self-attention block. The pro-
cess is defined as follows:

F̃ℓ = (GELU(F̂ℓWℓ
1 + bℓ

1))W
ℓ
2 + bℓ

2, (8)

where Wℓ
1,W

ℓ
2 ∈ RD×D and bℓ

1,b
ℓ
2 ∈ RD×D are learn-

able parameters. The dropout layer, residual connection
structure, and layer normalization operations are applied as
follows:

Fℓ+1 = LayerNorm(Fℓ + F̂ℓ + Dropout(F̃ℓ)). (9)

4.3 Prediction Layer and Training
In the final layer of BSARec, we calculate the user’s prefer-
ence score for the item i derived from user’s historical inter-
actions. This score is given by:

ŷi = p(vu|Su|+1 = v|Su) = eTvF
L
|Su|+1, (10)

where ev is the representation of item v from item embed-
ding matrix M, and FL

|Su|+1 is the output of the L-layer
blocks at step |Su|+ 1. This dot product computes the sim-
ilarity between these two vectors to give us the preference
score ŷi.

The cross-entropy (CE) loss function is usually used in
SR since the next item prediction task is treated as a clas-
sification task over the whole item set (Zhang et al. 2019;
Qiu et al. 2022; Du et al. 2023). We adopt the CE loss to
optimize the model parameter as:

L = −log
exp(ŷg)∑

i∈|V| exp(ŷi)
, (11)

where g ∈ |V| is the ground truth item.

4.4 Relation to Previous Models
Several Transformer-based SR models can be a special case
of BSARec, and the comparison with existing models is as
follows: i) When α is 0 in BSARec, our model is reduced
to SASRec. This is because pure self-attention is used as it
is. However, one difference is that their loss functions are
different. BSARec uses the CE loss, while SASRec uses
the BPR loss. Even in the case of DuoRec, which extends
SASRec with contrastive learning, it can be a BSARec with
α = 0 except for contrastive learning. ii) In the case of the
FMLPRec, it uses DFT only without self-attention. Never-
theless, the biggest difference is that the filter matrix itself



Datasets Metric Caser GRU4Rec SASRec BERT4Rec FMLPRec DuoRec FEARec BSARec Improv.

Beauty

HR@5 0.0125 0.0169 0.0340 0.0469 0.0346 0.0707 0.0706 0.0736 4.10%
HR@10 0.0225 0.0304 0.0531 0.0705 0.0559 0.0965 0.0982 0.1008 2.65%
HR@20 0.0403 0.0527 0.0823 0.1073 0.0869 0.1313 0.1352 0.1373 1.55%
NDCG@5 0.0076 0.0104 0.0221 0.0311 0.0222 0.0501 0.0512 0.0523 2.15%
NDCG@10 0.0108 0.0147 0.0283 0.0387 0.0291 0.0584 0.0601 0.0611 1.66%
NDCG@20 0.0153 0.0203 0.0356 0.0480 0.0369 0.0671 0.0694 0.0703 1.30%

Sports

HR@5 0.0091 0.0118 0.0188 0.0275 0.0220 0.0396 0.0411 0.0426 3.65%
HR@10 0.0163 0.0187 0.0298 0.0428 0.0336 0.0569 0.0589 0.0612 3.90%
HR@20 0.0260 0.0303 0.0459 0.0649 0.0525 0.0791 0.0836 0.0858 2.63%
NDCG@5 0.0056 0.0079 0.0124 0.0180 0.0146 0.0276 0.0286 0.0300 4.90%
NDCG@10 0.0080 0.0101 0.0159 0.0229 0.0183 0.0331 0.0343 0.0360 4.96%
NDCG@20 0.0104 0.0131 0.0200 0.0284 0.0231 0.0387 0.0405 0.0422 4.20%

Toys

HR@5 0.0095 0.0121 0.0440 0.0412 0.0432 0.0770 0.0783 0.0805 2.81%
HR@10 0.0161 0.0211 0.0652 0.0635 0.0671 0.1034 0.1054 0.1081 2.56%
HR@20 0.0268 0.0348 0.0929 0.0939 0.0974 0.1369 0.1397 0.1435 2.72%
NDCG@5 0.0058 0.0077 0.0297 0.0282 0.0288 0.0568 0.0574 0.0589 2.61%
NDCG@10 0.0079 0.0106 0.0366 0.0353 0.0365 0.0653 0.0661 0.0679 2.72%
NDCG@20 0.0106 0.0140 0.0435 0.0430 0.0441 0.0737 0.0747 0.0768 2.81%

Yelp

HR@5 0.0117 0.0130 0.0149 0.0256 0.0159 0.0271 0.0262 0.0275 1.48%
HR@10 0.0197 0.0221 0.0249 0.0433 0.0287 0.0442 0.0437 0.0465 5.20%
HR@20 0.0337 0.0383 0.0424 0.0717 0.0490 0.0717 0.0691 0.0746 4.04%
NDCG@5 0.0070 0.0080 0.0091 0.0159 0.0100 0.0170 0.0165 0.0170 0.00%
NDCG@10 0.0096 0.0109 0.0123 0.0216 0.0142 0.0225 0.0221 0.0231 2.67%
NDCG@20 0.0131 0.0150 0.0167 0.0287 0.0192 0.0294 0.0285 0.0302 2.72%

LastFM

HR@5 0.0303 0.0312 0.0413 0.0294 0.0367 0.0431 0.0431 0.0523 21.35%
HR@10 0.0431 0.0404 0.0633 0.0459 0.0560 0.0624 0.0587 0.0807 27.49%
HR@20 0.0642 0.0541 0.0927 0.0596 0.0826 0.0963 0.0826 0.1174 21.91%
NDCG@5 0.0227 0.0217 0.0284 0.0198 0.0243 0.0300 0.0304 0.0344 13.16%
NDCG@10 0.0268 0.0245 0.0355 0.0252 0.0306 0.0361 0.0354 0.0435 20.50%
NDCG@20 0.0321 0.0280 0.0429 0.0286 0.0372 0.0446 0.0414 0.0526 17.94%

ML-1M

HR@5 0.0927 0.1005 0.1374 0.1512 0.1316 0.1838 0.1834 0.1944 5.77%
HR@10 0.1556 0.1657 0.2137 0.2346 0.2065 0.2704 0.2705 0.2757 1.92%
HR@20 0.2488 0.2664 0.3245 0.3440 0.3137 0.3738 0.3714 0.3884 3.91%
NDCG@5 0.0592 0.0619 0.0873 0.1021 0.0846 0.1252 0.1236 0.1306 4.31%
NDCG@10 0.0795 0.0828 0.1116 0.1289 0.1087 0.1530 0.1516 0.1568 2.48%
NDCG@20 0.1028 0.1081 0.1395 0.1564 0.1356 0.1790 0.1771 0.1851 3.41%

Table 2: Performance comparison of different methods on 6 datasets. The best results are in boldface and the second-best results
are underlined.‘Improv.’ indicates the relative improvement against the best baseline performance.

in FMLPRec is a learnable matrix. Because of this, FML-
PRec’s filter is inevitably learned as a low-pass filter, while
BSARec uses a filter rescaler to simultaneously use a high-
pass filter. iii) Similar to BSARec, FEARec separates low-
frequency and high-frequency information in the frequency
domain. However, FEARec allows the frequency domain to
be learned separately before entering its Transformer’s en-
coder. BSARec adaptively uses low and high-frequency in-
formation by using a frequency rescaler in a step to inject an
inductive bias. FEARec is designed with a complex model
structure using contrast learning and frequency normaliza-
tion. However, our model shows better performance with a
much simpler architecture.

5 Experiments
5.1 Experimental Setup
Datasets We evaluate our model on 6 SR datasets where
the sparsity and domain varies: i,ii,iii) Amazon Beauty,
Sports, Toys (McAuley et al. 2015), iv) Yelp, v) ML-
1M (Harper and Konstan 2015), and vi) LastFM. We fol-
lowed the data pre-processing procedure from Zhou et al.
(2020, 2022), where all reviews and ratings are regarded

as implicit feedback. The detailed dataset statistics are pre-
sented in Appendix.

Baselines To verify the effectiveness of our model, we
compare our method with well-known SR baselines with
three categories:
• RNN or CNN-based sequential models: GRU4Rec (Hi-

dasi et al. 2016) and Caser (Tang and Wang 2018).
• Transformer-based sequential models: SASRec (Kang

and McAuley 2018), BERT4Rec (Sun et al. 2019), and
FMLPRec (Zhou et al. 2022).

• Transformer-based sequential models with contrsastive
learning: DuoRec (Qiu et al. 2022) and FEARec (Du
et al. 2023).

Implementation Details Our method is implemented in
PyTorch on a NVIDIA RTX 3090 with 16 GB memory. We
search the best hyperparameters for baselines based on their
recommended hyperparameters. We conduct experiments
under the following hyperparameters: the coefficient α is in
{0.1, 0.3, 0.5, 0.7, 0.9}, and c is chosen from {1, 3, 5, 7, 9}.
The number of BSA blocks L is set to 2 and the number
of heads in Transformer h is in {1, 2, 4}. The dimension of
D is set to 64, and the maximum sequence length N is set



Methods Beauty Toys
HR@20 NDCG@20 HR@20 NDCG@20

BSARec 0.1373 0.0703 0.1435 0.0768
Only A 0.1265 0.0657 0.1320 0.0720
Only AIB 0.1338 0.0677 0.1402 0.0744
Scalar β 0.1333 0.0685 0.1435 0.0756

Table 3: Ablation studies on Ã and β. More results in other
datasets are in Appendix.

to 50. For training, the Adam optimizer is optimized with
learning rate in {5 × 10−4, 1 × 10−3}, and the batch size
is set to 256. The best hyperparameters are in Appendix for
reproducibility.

Metrics To measure the recommendation accuracy, we
commonly use widely used Top-k metrics, HR@k (Hit Rate)
and NDCG@k (Normalized Discounted Cumulative Gain)
to evaluate the recommended list, where k is set to 5, 10,
and 20. To ensure a fair and comprehensive comparison, we
analyze the ranking results across the full item set without
negative sampling (Krichene and Rendle 2020).

5.2 Experimental Results
Table 2 presents the detailed recommendation performance.
Overall, our proposed method, BSARec, clearly marks the
best accuracy. First, compared to existing RNN-based and
CNN-based methods, Transformer-based methods show bet-
ter performance in modeling interaction sequences in SR.
Second, Transformer-based methods show better perfor-
mance of BERT4Rec or FMLPRec models than SASRec.
In particular, FMLPRec redesigned the self-attention of the
existing Transformer only with MLP, but it still does not per-
form well in all datasets. Third, there is no doubt that models
using contrastive learning show higher results than models
that do not. DuoRec and FEARec greatly outperform SAS-
Rec, BERT4Rec and FMLPRec.

Surprisingly, however, BSARec records the best perfor-
mance across all datasets and all metrics. The most sur-
prising thing is that it can show better performance than
DuoRec and FEARec without using contrastive learning.
In LastFM, BSARec shows a performance improvement of
27.49% based on HR@10. Thus, our model leaves a mes-
sage that it can show good performance without going to
complex model design by adding contrastive learning.

5.3 Ablation, Sensitivity, and Additional Studies
Ablation Studies As ablation study models, we define the
following models: i) the first ablation model has only the
self-attention term i.e., A, ii) the second ablation model has
only the attentive inductive bias term, i.e., AIB in Eq. 5, and
iii) the third ablation model uses β as a single parameter. For
Beauty and Toys, the ablation study model with only AIB
outperforms the case with only A (e.g., HR@20 in Beauty
by AIB of 0.1338 versus 0.1265 by A). However, BSARec,
which utilizes them all, outperforms them. This shows that
both are required to achieve the best accuracy.
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Figure 5: Sensitivity to α. More results in other datasets are
in Appendix.
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Figure 6: Sensitivity to c. More results in other datasets are
in Appendix.

Sensitivity to α Fig. 5 shows the NDCG@20 and HR@20
by varying the α. For Beauty, we find our BSARec, a larger
value of α is preferred. For ML-1M, with α = 0.3, we
can achieve the best accuracy. The trade-off between the
self-attention matrix and the inductive bias differs for each
dataset from these results.

Sensitivity to c Fig. 6 shows the NDCG@20 and HR@20
by varying the c. For Beauty, the best accuracy is achieved
when c is 5. For ML-1M, the larger the value of c, the better
performance is reached.

Visualization of Learned β In Fig. 7 (a), we show learned
β at each layer for all datasets. We can see that a higher
weight in the first layer is learned than in the second layer,
which confirms that putting more weight on high-frequency
in the first layer is effective. In particular, LastFM and
Beauty show higher β weights than other datasets.

Case Study We introduce case study obtained from our
experiment. In Fig. 7 (b), we analyze one of the heavy users
in LastFM. The user u322 constantly listens to artists, mainly
in the rock genre. In other models, u322 cannot capture sud-
den interaction changes in the next step. Only BSARec rec-
ommends an artist from the pop genre as the next artist u322

will listen to. This shows that BSARec can capture high-
frequency signals that are abrupt changes in user preference.

5.4 Model Complexity and Runtime Analyses
To evaluate the overhead of BSARec, we evaluate the num-
ber of parameters and runtime per epoch during training.
The results are shown in Table 4. Overall, BSARec increases
total parameters marginally. BSARec is actually faster to



1 2
`

0.00

0.05

0.10

0.15

0.20

0.25
β

Beauty
Toys
Sports

Yelp
LastFM
ML-1M

(a) Visualization of learned β

10 20
Listening History of u322

Ro
ck

Ele
c.

Pop
Fol

kBaro
qu

eClas
sic

Correct recommendation 
(Only by BSARec)

|u322| + 1

Artists Listened by u322
Recommended Artist

(b) Case study
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Methods Beauty ML-1M
# params s/epoch # params s/epoch

BSARec 878,208 12.75 322,368 20.73
SASRec 877,824 10.41 321,984 19.37
DuoRec 877,824 19.26 321,984 32.33
FEARec 877,824 156.83 321,984 278.24

Table 4: The number of parameters and training time (run-
time per epoch) on Beauty and ML-1M. More results in
other datasets are in Appendix.

train than FEARec and DuoRec using contastive learning.
For ML-1M, BSARec is 7.02% slower than SASRec, but
considering the performance difference, it is a big deal.

6 Related Work
6.1 Sequential Recommendation
In the domain of SR, the primary objective is to recom-
mend the next item based on the sequential patterns in-
herent in the user’s historical interactions. FPMC (Rendle,
Freudenthaler, and Schmidt-Thieme 2010) in SR incorpo-
rates Markov Chains to capture item-item transitions. Fos-
sil (He and McAuley 2016) extends the approach to consider
higher-order item transitions, improving its predictive capa-
bilities.

Several notable works have been conducted in this area,
each presenting distinct approaches. Early approaches (Ren-
dle, Freudenthaler, and Schmidt-Thieme 2010; He and
McAuley 2016) tried to improve prediction by utilizing
Markov Chains to transition between items in the SR. An-
other avenue of SR leverages convolutional neural networks
for sequence modeling, as seen in Caser (Tang and Wang
2018). Caser treats the embedding matrix of items in the
sequence as an image and applies convolution operators to
capture local item-item interactions effectively.

The advancements in deep neural network-based SR
methods have also made a profound impact on SR, lead-
ing to the adoption of RNNs and the self-attention mech-
anisms. For instance, GRU4Rec (Hidasi et al. 2016) pro-
poses the utilization of GRUs. The success of Transformer-
based models, exemplified by Transformer, has further mo-
tivated researchers to explore the potential of self-attention

in SR. Notably, SASRec (Kang and McAuley 2018) and
BERT4Rec (Sun et al. 2019) have demonstrated the efficacy
of self-attention. These works signify the continued pursuit
of enhanced SR methods by integrating self-attention.

With their success, sequential recommendations are ac-
tively studied (Qiu et al. 2022; Zhou et al. 2022; Du et al.
2023; Lin et al. 2023; Zhou et al. 2023; Yue et al. 2023;
Liu et al. 2023; Jiang et al. 2023). Recently, contrastive
learning has been used as an aid to improve SR perfor-
mance. DuoRec (Qiu et al. 2022) uses unsupervised model-
level augmentation and supervised semantic positive sam-
ples for contrastive learning. FMLPRec (Zhou et al. 2022)
proposes a filter-enhanced MLP. This approach utilizes a
global filter to eliminate frequency domain noise. However,
the global filter tends to assign more significance to lower
frequencies while undervaluing relatively higher frequen-
cies. FEARec (Du et al. 2023) is a contrastive learning-based
model that uses time domain attention and autocorrelation.
AdaMCT (Jiang et al. 2023), which appears at the same
time as our work, incorporates locality-induced bias into the
Transformer using a local convolutional filter.

6.2 Oversmoothing and Transformers

The concept of oversmoothing was first presented by Li,
Han, and Wu (2018) in the field of graph research. Intu-
itively, the expression converges to a constant after repeat-
edly exchanging messages with neighbors as the layer of
graph neural networks goes to infinity, and research is ac-
tive to solve this problem (Rusch et al. 2022; Choi et al.
2023b). Coincidentally, a parallel occurrence to oversmooth-
ing is observed in Transformers. Early work empirically at-
tributes this to attention collapse or patch or token unifor-
mity (Zhou et al. 2021; Gong et al. 2021). Dong, Cordonnier,
and Loukas (2021) also reveals that the pure Transformer
output converges to a rank 1 matrix. There have been sev-
eral attempts in computer vision to solve this problem (Wang
et al. 2022; Guo et al. 2023; Choi et al. 2023c), but in SR,
there is only one study that solves fast singular value de-
cay (Fan et al. 2023).

7 Conclusion

This paper delves into the realm of sequential recommenda-
tion (SR) built upon Transformers, an avenue that has gar-
nered substantial success and popularity. The self-attention
within Transformers encounters limitations stemming from
insufficient inductive bias and its low-pass filtering proper-
ties. We also reveal the oversmoothing due to this low-pass
filter in SR. To address this, we introduce BSARec, which
uses a combination of attentive inductive bias and vanilla
self-attention and integrates low and high-frequencies to
mitigate oversmoothing. By understanding and addressing
the limitations of self-attention, BSARec significantly ad-
vances SR. Our model surpasses 7 baseline methods across
6 datasets in recommendation performance. In future work,
we aim to delve deeper into the frequency dynamics of the
self-attention for SR.
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A More Preliminaries on Fourier Transform
We provide the detailed background of Fourier transform.
Here, we only consider discrete Fourier transform (DFT)
on real-value domain F : RN → CN . DFT is a transfor-
mation used to convert a discrete time-domain signal into
a discrete frequency-domain representation. This transfor-
mation is particularly useful in signal processing and many
other fields. In this paper, we use the following expres-
sion of the Fourier basis, which is the row of this matrix:
fj = [e2πi(j−1)·0 . . . e2πi(j−1)(N−1)]T/

√
N ∈ RN , where i

is the imaginary unit and j denotes the j-th row. The DFT
is often used in its matrix form as a transformation matrix,
which can be applied to a signal through matrix multiplica-
tion. We can define the DFT matrix as follows:

F =
1√
N



1 1 . . . 1
1 e2πi . . . e2πi(N−1)

...
...

. . .
...

1 e2πi(j−1)·1 . . . e2πi(j−1)·(N−1)

...
...

. . .
...

1 e2πi(N−1) . . . e2πi(N−1)2


,

(12)

and its inverse Fourier transform is DFT. Specifically, when
the matrix representation of the IDFT is the conjugate trans-
pose (Hermitian) of the DFT matrix, scaled by a factor of
1/
√
N , the transformation becomes unitary. The IDFT ma-

trix can be expressed as:

F−1 =
1√
N

FH , (13)

where FH denotes the conjugate transpose of F. The factor
1/
√
N ensures that the transformation is norm-preserving,

meaning that the energy of the signal remains invariant un-
der both the DFT and IDFT. This normalization underpins
the unitary nature of the transformation and emphasizes the
duality between the time and frequency domains in discrete
signal processing.

This relationship emphasizes that the IDFT is not an iso-
lated operation, but rather intimately linked with the DFT
through the conjugate transpose operation and a normaliza-
tion factor. By utilizing the DFT matrix F in this manner, we
are able to conduct the IDFT without resorting to a separate
transformation matrix.

B Definition of a Low-Pass Filter
In this paper, a specific type of filter that preserves only
the low-frequency components while reducing the remain-
ing high-frequency components is called a low-pass filter.
More precisely, we define a low-pass filter.

Definition B.1. Given a transformation f : RN → RN ,
with indicating the application of f for t times, the f is a
low-pass filter if and only if, for all x ∈ RN :

lim
t→∞

||HFC(f t(x))||2
||LFC(f t(x))||2

= 0. (14)

Definition B.1 provides a criterion to evaluate the fre-
quency behavior of a transformation. In essence, if after
recurrently applying the transformation f to a x, and then
taking its DFT, the high-frequency components are dimin-
ished compared to the low-frequency components as time
advances, then f can be described as exhibiting a low-pass
behavior.

C Proof of Theorem 3.1
Theorem 3.1. Let A = softmax(QKT/

√
d). Then A in-

herently acts as a low-pass filter. For all x ∈ RN , in other
words,

lim
t→∞

||HFC(f t(x))||2
||LFC(f t(x))||2

= 0. (15)

Proof. Given the matrix A defined by the softmax function,
it has non-negative entries, and the sum of each row is unity.
We aim to describe the evolution of the x under repeated
application of A.

Let’s denote the Jordan Canonical Form of A as J, with
the similarity transformation represented by the matrix P,
such that:

A = PJP−1, (16)

where J is block-diagonal, with each block corresponding to
an eigenvalue and its associated Jordan chains. The largest
eigenvalue, by the Perron-Frobenius theorem, is real, non-
negative, and dominant. Let’s denote this eigenvalue by λ1.

Now, consider the repeated application of A:

f t(x) = Atx = (PJP−1)tx. (17)

Expanding using the binomial theorem and taking into ac-
count the structure of the Jordan blocks, we can see that the
dominant behavior for large t will be λt

1. Other terms involv-
ing smaller eigenvalues or higher powers of t in the Jordan
blocks will become negligible over time, compared to the
term with λt

1.
Expressing the transformation in the frequency domain,

high-frequency components attenuate faster than the pri-
mary low-frequency component. This is due to the term
λt
1 becoming overwhelmingly dominant as t grows, causing

other components to diminish in comparison.
Thus, in the context of our filter definitions, it becomes

evident that:

lim
t→∞

||HFC[f t(x)− λt
1v1]||2

||LFC[λt
1v1]||2

= 0 (18)

Here, v1 is the generalized eigenvector corresponding to λ1.
This behavior is emblematic of a low-pass filter, reaffirm-

ing the low-pass nature of A. Importantly, this is irrespec-
tive of the specific configurations of the input matrices Q
and K.

D Additional Details for Experiments
D.1 Details of Datasets
We provide 6 benchmark datasets used for our experiments.
Table 5 summarizes the statistical information of the pro-
cessed datasets.



# Users # Items # Interactions Avg. Length Sparsity
Beauty 22,363 12,101 198,502 8.9 99.93%
Sports 25,598 18,357 296,337 8.3 99.95%
Toys 19,412 11,924 167,597 8.6 99.93%
Yelp 30,431 20,033 316,354 10.4 99.95%
LastFM 1,090 3,646 52,551 48.2 98.68%
ML-1M 6,041 3,417 999,611 165.5 95.16%

Table 5: Statistics of the processed datasets

• Amazon Beauty, Sports, Toys are three sub-categories of
Amazon dataset (McAuley et al. 2015) which contains
series of product reviews crawled from the Amazon.com.
These datasets are known for its high sparsity and short
sequence lengths, and widely used for SR.

• Yelp3 is a popular business recommendation dataset. We
only treat the transaction records after January 1st, 2019
since it is very large.

• ML-1M (Harper and Konstan 2015) is the popular movie
recommendation dataset provided by MovieLens4. It
has the longest average interaction length among our
datasets.

• LastFM5 contains user interaction with music, such as
artist listening records. It is used to recommend musi-
cians to users in SR with long sequence lengths.

D.2 Details of Baselines
We compare our method with well-known SR baselines with
3 categories. The detailed information of baselines are fol-
lows:

• RNN or CNN-based sequential models: GRU4Rec (Hi-
dasi et al. 2016) is a model that incorporate GRU for SR.
Caser (Tang and Wang 2018) is a CNN-based method
capturing high-order patterns by applying horizontal and
vertical convolutional operations for SR.

• Transformer-based sequential models: SASRec (Kang
and McAuley 2018) is the first sequential recommender
based on the self-attention. It is a popular baseline in SR.
BERT4Rec (Sun et al. 2019) uses a masked item training
scheme similar to the masked language model sequential
in NLP. The backbone is the bi-directional self-attention
mechanism. FMLPRec (Zhou et al. 2022) is an all-MLP
model with learnable filters for SR.

• Transformer-based sequential models with contrsastive
learning: DuoRec (Qiu et al. 2022) uses unsupervised
model-level augmentation and supervised semantic posi-
tive samples for contrastive learning. FEARec (Du et al.
2023) is a SR model based on contrastive learning using
time domain attention and autocorrelation.

D.3 Experimental Settings & Hyperparameters
The following software and hardware environments were
used for all experiments: UBUNTU 18.04 LTS, PYTHON

3https://www.yelp.com/dataset
4https://grouplens.org/datasets/movielens/
5https://grouplens.org/datasets/hetrec-2011/

3.9.7, PYTORCH 1.8.1, NUMPY 1.24.3, SCIPY 1.11.1,
CUDA 11.1, and NVIDIA Driver 465.19, and i9 CPU, and
NVIDIA RTX 3090.

For reproducibility, we introduce the best hyperparameter
configurations for each dataset in Table 6. We conducted ex-
periments under the following hyperparameters: the α is in
{0.1, 0.3, 0.5, 0.7, 0.9}, c is in {1, 3, 5, 7, 9}, and the num-
ber of heads in Transformer h is chosen from {1, 2, 4}. For
training, the Adam optimizer is optimized with learning rate
in {5× 10−4, 1× 10−3}.

Beauty Sports Toys Yelp LastFM ML-1M
α 0.7 0.3 0.7 0.7 0.9 0.3
c 5 5 3 3 3 9
h 1 4 1 4 1 4
lr 5× 10−4 1× 10−3 1× 10−3 1× 10−3 1× 10−3 5× 10−4

Table 6: Best hyperparameters of BSARec on all datasets

E Ablation Studies
Table 7 shows the results of the ablation study on all
datasets. For all datasets, BSARec, which utilizes A and
AIB, outperforms “Only A” and “Only AIB”. This results
show that both are required to achieve the best accuracy. We
also conduct an ablation study on β. We check the effect
of the learnable vector β and the learnable scalar parameter
β. Rescaling high frequencies by the learnable vector β has
better recommendation performance than using the scalar β.

F Sensitivity Analyses
Fig. 8 shows the HR@20 and NDCG@20 by varying the α
on all datasets. For Beauty, Toys, Yelp and LastFM, a larger
value of α is preferred. For Sports and ML-1M, the best
accuracy is achieve when α. The balance between the self-
attention matrix and the inductive bias varies across datasets
to these results.

Fig. 9 shows the HR@20 and NDCG@20 by varying the
c on all datasets. For Beauty and Sports, the best accuracy is
achieve when c is 5. For Toys, Yelp and LastFM, with c = 3,
we can achieve the best accuracy. For ML-1M, a larger value
of c is preferred. The number of lowest frequency compo-
nents varies across datasets according to these results.

G Model Complexity and Runtime Analyses
To evaluate the complexity and efficiency of BSARec, we
evaluate the number of parameters and runtime per epoch.
Results for all datasets are shown in Table 8. Overall,
BSARec slightly increases the total parameters. However,
if we use β as one scalar parameter β in our model, the
number of parameters may not make much difference. It
only increases by 258 parameters compared to SASRec,
DuoRec and FEARec. We show that BSARec has faster run-
time times per epoch than FEARec and DuoRec across all
datasets.



Methods Beauty Sports Toys Yelp LastFM ML-1M
HR@20 NDCG@20 HR@20 NDCG@20 HR@20 NDCG@20 HR@20 NDCG@20 HR@20 NDCG@20 HR@20 NDCG@20

BSARec 0.1373 0.0703 0.0858 0.0422 0.1435 0.0768 0.0746 0.0302 0.1174 0.0526 0.3884 0.1851
Only A 0.1265 0.0657 0.0779 0.0382 0.1320 0.0720 0.0618 0.0248 0.0899 0.0430 0.3826 0.1846
Only AIB 0.1338 0.0677 0.0857 0.0416 0.1402 0.0744 0.0705 0.0287 0.1009 0.0455 0.3780 0.1807
Scalar β 0.1333 0.0685 0.0838 0.0405 0.1435 0.0756 0.0707 0.0291 0.1092 0.0497 0.3762 0.1794

Table 7: Ablation on all datasets

Methods Beauty Sports Toys Yelp LastFM ML-1M

# params s/epoch # params s/epoch # params s/epoch # params s/epoch # params s/epoch # params s/epoch

BSARec 878,208 12.75 1,278,592 18.58 866,880 11.63 1,385,856 21.20 337,088 3.11 322,368 20.73

SASRec 877,824 10.41 1,278,208 15.32 866,496 9.96 1,385,472 18.25 336,704 2.80 321,984 19.37
DuoRec 877,824 19.26 1,278,208 27.99 866,496 18.79 1,385,472 31.08 336,704 4.24 321,984 32.33
FEARec 877,824 156.83 1,278,208 233.42 866,496 132.43 1,385,472 257.56 336,704 27.82 321,984 278.24

Table 8: The number of parameters and training time (runtime per epoch) on all datasets
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Figure 8: Sensitivity to α on all datasets
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Figure 9: Sensitivity to c on all datasets



H Performance under Different Setting
In our main text, we use the evaluation strategy of DuoRec
and FEARec, which employ all the items in the dataset. To
further verify the effectiveness of our BSARec, we also con-
duct experiments under another strategy that SASRec and
FMLP-Rec used. For evaluation, SASRec and FMLPRec
pair the ground-truth item with 99 randomly sampled neg-
ative items that the user has not interacted with.

We select Transformer-based SASRec as the represen-
tative baseline model and FMLP-Rec as one of the SOTA
baselines. Table 9 shows the results on Beauty, Sports, Toys,
Yelp, LastFM, and ML-1M datasets. From the table, we can
see similar tendencies as in Table 2. BSARec performs much
better than the other two methods. In most of the cases,
BSARec outperforms SASRec and FMLP-Rec. These find-
ings indicate that our beyond self-attention layer and atten-
tive inductive bias with frequency rescaler are exactly effec-
tive for the SR task.

Dataset Metric SASRec FMLPRec BSARec

Beauty

HR@5 0.3512 0.3922 0.4312
HR@10 0.4434 0.4914 0.5225
NDCG@5 0.2628 0.2964 0.3379
NDCG@10 0.2926 0.3284 0.3673
MRR 0.2637 0.2949 0.3350

Sports

HR@5 0.3480 0.3781 0.4133
HR@10 0.4717 0.4997 0.5303
NDCG@5 0.2492 0.2739 0.3102
NDCG@10 0.2891 0.3131 0.3479
MRR 0.2520 0.2742 0.3089

Toys

HR@5 0.3594 0.3867 0.4224
HR@10 0.4566 0.4852 0.5180
NDCG@5 0.2726 0.2926 0.3351
NDCG@10 0.3040 0.3244 0.3659
MRR 0.2746 0.2917 0.3349

Yelp

HR@5 0.5553 0.6058 0.6447
HR@10 0.7406 0.7707 0.7848
NDCG@5 0.3902 0.4337 0.4824
NDCG@10 0.4504 0.4873 0.5280
MRR 0.3748 0.4114 0.4587

LastFM

HR@5 0.2716 0.2853 0.3752
HR@10 0.3972 0.4138 0.5028
NDCG@5 0.1871 0.1975 0.2634
NDCG@10 0.2276 0.2394 0.3045
MRR 0.1976 0.2081 0.2636

ML-1M

HR@5 0.6874 0.6763 0.7023
HR@10 0.7904 0.7858 0.7978
NDCG@5 0.5308 0.5212 0.5646
NDCG@10 0.5642 0.5568 0.5955
MRR 0.5020 0.4941 0.5406

Table 9: Performance comparison on 99 negative sampling


